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INTRODUCTION 
Quantitative structure-activity and relationships, often 
simply known as QSAR, is an analytical application 
that can be used to interpret the quantitative 
relationship between the biological activities of a 
particular molecule and its structure1. It is considered a 
major method of chemical researching all over the 
world today and is frequently used in agricultural, 
biological, environmental, medicinal, and physical 
organic studies2-6. 

ABSTRACT 
Quantitative structure-activity relationship (QSAR) modeling pertains to the construction of predictive models 
of biological activities as a function of structural and molecular information of a compound library. The 
concept of QSAR has typically been used for drug discovery and development and has gained wide 
applicability for correlating molecular information with not only biological activities but also with other 
physicochemical properties, which has therefore been termed quantitative structure-property relationship 
(QSPR). Typical molecular parameters that are used to account for electronic properties, hydrophobicity, 
steric effects, and topology can be determined empirically through experimentation or theoretically via 
computational chemistry. A given compilation of data sets is then subjected to data pre-processing and data 
modeling through the use of statistical and/or machine learning techniques. This review aims to cover the 
essential concepts and techniques that are relevant for performing QSAR/QSPR studies through the use of 
selected examples from our previous work. 

KEYWORDS  
Quantitative structure-activity relationship, QSAR, Quantitative structure-property relationship and 
Multivariate analysis. 

Author for Correspondence: 
 
Shirish Ambulgekar, 
School of Chemical Sciences,  
Swami Raman and Teerth Marathwada University, 
Vishnupuri, Nanded-431 606, Maharashtra, India. 
 
Email:  shirishambulgekar@yahoo.com 
 

                                                                                                                                              

Asian Journal of Research in Chemistry 
and 

Pharmaceutical Sciences 
Journal home page: www.ajrcps.com 



    

Shirish Ambulgekar. / Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 4(1), 2016, 1 - 10. 

Available online: www.uptodateresearchpublication.com         January – March                                             2 

 

Quantitative structure-activity and relationships 
techniques have been used throughout the past century. 
It was initially used by a scientist from the University 
of Strasbourg in the 1860’s who surprisingly noticed 
how the toxicity of alcohols in mammalians had 
improved when a decrease in solubility of water took 
place7-9. The technique of QSAR was later 
implemented by two other scientists, Crum-Brown and 
Fraser, and they proposed a correlation between the 
physiological activities and chemical structures existed 
for a series of compounds. Even though QSAR has 
been around, it was not regularly used or found 
significantly until after scientist, Corwin Hansch began 
doing his pioneer work in pharmaceutical research10-14. 
Usage and function14-20  
The main objective of QSAR is to observe the 
biological responses of a set of molecules, measure it, 
and statistically relate the measured activity to some 
molecular structure on their surface. The product of 
QSAR will then produce useful equations, images or 
models in either 2D or 3D form that would relate their 
biological responses or physical properties to their 
molecular structure. 
A General representation of the QSAR equation21 
Biological Activity = co + cd1 + (c2d1)² + c3d2 + 
c4d2² + …. 
*di = the value of the descript or for each molecule in 
the series 
*ci = represents a coefficient calculated by fitting 
variations in the data by regression analysis 
Simplified Overview of the Stages of QSAR Analysis 

1. Compile molecular descript or for compounds 
that are expected to be successful products in a 
reaction. 
Examples of traditional QSAR descriptors 
include pKa, Es, log P, pi 

2. Express the biological property as a function of 
the molecular descriptors in a plausible 
equation, such as the equation listed above. 

3. Estimate the activity of a drug candidate based 
on the molecular descriptors and the QSAR 
equation by estimating the value based on two 
known values or by inferring from values 
within an already observed interval of the data. 

 

Related Application22-28 
Drug Discovery 
Influenza has been known as one of the major causes 
of death worldwide due to its highly contagious nature 
and susceptibility in the aging population. Vaccines 
have been the primary prevention for influenza, but 
because of its limited effectiveness in patients, an 
improved alternative such as antiviral drugs have been 
considered. In today’s pharmaceutical market, four 
drugs have been made available to the general public 
to treat and/or prevent influenza. They are amantadine, 
osetlamivir, rimantadine, and zanamivir. These drugs 
were all analyzed using the unique conceptual 
modeling device of QSAR, where models of 
compounds for influenza inhibition were developed 
and it was from these enhancing models, researchers 
were able to suggest the inhibitor of influenza to be 
dependent on its hydrophobicity. 
Quantitative structure activity relationship (QSAR) 
models are a statistical solution to the problem of 
directly calculating physical and biological properties
of molecules from their physical structure. The direct 
prediction of properties is in general not feasible either 
owing to lack of computing resources or lack of 
knowledge about the relationship between structure 
and property. The goal of a QSAR model is to extract 
information from a set of numerical descriptors 
characterizing molecular structure and use this 
information to develop inductively a relationship 
between structure and property. 
Two important questions arise during the modeling 
process. First, are the data used to build the model 
representative of the whole dataset and can the model 
be extended to predict properties for new molecules?. 
Second, given that a model encodes information about 
the structures of molecules and relates this to their 
properties, can we extract and interpret the encoded 
information?. 
Until recently advances in medicinal and 
pharmaceutical chemistry depended on a trial and error 
process aided by intuition. Though the properties that 
would indicate a certain molecule as a drug candidate 
were known, it was not really feasible to investigate 
large numbers of molecules for these types of 
properties. Of course, the nature of these properties 
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would be represented by structural features of a 
molecule and thus examination of certain motifs 
provided a direction for experimental investigations. 
The problem with this approach is that it does not 
always lead to an understanding of why a molecule 
behaves as a drug against its target or why it does so. 
Furthermore, given a series of compounds it is not 
always feasible to investigate experimentally which 
members of the series would be more potent or less 
toxic. As a result, though medicinal chemistry has 
resulted in a series of life saving drugs, the process has 
traditionally been slow and tedious, and in many cases 
advances have been due to serendipity rather than 
scientifically guided investigation. In an ideal world 
one would be able to take a 3-D molecular structure 
and calculate the required properties. This utopian goal 
has a number of problems associated with it. 
First, what types of properties are to be calculated? 
Certain intrinsic physical properties can be calculated 
using ab-initio quantum mechanical computation 
techniques. Examples include dipole moments, charges 
and heats of formation. Though these are certainly 
useful, they do not provide much insight into drug-like 
properties such as potency and bio availability. In 
addition, for large collections of molecules, ab-initio 
techniques become very time consuming. Semi-
empirical quantum mechanical methods alleviate the 
intensive nature of these calculations, but we are still 
faced with the restriction on the types of properties that 
can be calculated. Second, the drug-like activity of a 
molecule is intimately related to the target it is 
supposed to interact with. Targets generally involve 
some type of protein to which the putative drug will 
bind. Thus when considering the activity of a drug, we 
cannot simply consider the properties of the drug 
molecule itself. That is, the nature of the interaction 
between the drug and target must be investigated to 
understand fully the activity of a drug. However, ab-
initio and semi-empirical techniques have traditionally 
not been suited for the modeling of large protein 
systems. Though recent advances in linear scaling and 
hybrid techniques have expanded the purview of 
quantum mechanical methods to systems containing 
tens of thousands of molecules, these methods are still 
not efficient enough to model thousands or millions of 

molecular structures, and their associated targets, at a 
time. Third, though the interactions of a drug with its 
target are certainly important, the drug must be 
absorbed by cells and the also metabolized and 
excreted from the body. Thus absorption properties, 
the nature of the metabolites and other characteristics 
must also be considered. Clearly, these are very 
complex properties that involve interactions with a 
large number of cellular processes. Modeling this 
quantum mechanically is nearly impossible. 
The above discussion illustrates two fundamental 
problems. It is not feasible to calculate from theory all 
the properties of a drug molecule that would help us 
understand its activity and its utility, and we want to be 
able to analyze large sets of molecules for these 
properties. Why do we need to analyze large sets of 
molecules? The reason for this is closely tied to the 
nature of drug discovery in recent years. The drug 
discovery process is time consuming and expensive. 
Often it can take 10 to 15 years for a drug to reach the 
market from the laboratory. Given this situation, it is 
important that a company select the proper compound 
for study. Combined with the results from high 
throughput screens and in-house libraries, this can 
mean having to select tens or hundreds of compounds 
from a collection of millions. Furthermore, the ability 
to generate an arbitrary number of unique chemical 
structures in silico, to create virtual libraries, supplants 
the actual compounds that a company might have 
synthesized in its physical collection. Clearly, testing 
each compound libraries (virtual or real) for drug-like 
properties is out of the question. As we have seen 
above, calculating properties for collections of this size 
is either not feasible or impossible. The question thus 
comes down to this: how can we calculate arbitrary 
properties of hundreds of thousands of molecules 
rapidly and accurately? The short answer is that we 
avoid the calculation step completely and instead 
predict a property of a set molecules based on a model 
derived from the measured values of that property for a 
small subset. In a QSAR analysis, the central task is to 
find a regression function that predicts the activity of 
the molecule in high accuracy. Hence, the present 
study is aimed at to establish the QSAR between 
experimental antiplasmodial activity and structure 



    

Shirish Ambulgekar. / Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 4(1), 2016, 1 - 10. 

Available online: www.uptodateresearchpublication.com         January – March                                             4 

 

electronic descriptors which may focus on the 
molecular structures of the compounds. In last 
decades, QSAR have been applied in many areas 
enabling to prevent time consuming and cost during 
the analysis of biological activities of interest. The 
main hypothesis involved in any QSAR is the 
assumption that the variation of the behavior of 
chemical compounds, as expressed by any 
experimentally measured biological property, can be 
correlated with numerical entities related to some 
aspect of the chemical structure termed molecular 
descriptors. Descriptors are generally used to describe 
different characteristics/attributes of the chemical 
structure in order to yield information about the 
activity/property being studied. In general, QSAR 
studies are affected by various factors from which the 
most relevant are: (a) the selection of the best 
molecular descriptors that should include maximum 
information of molecular structures and a minimum 
overlap between them;  (b) the optimal number of 
descriptors to be included in the model; (c) the use of 
suitable modeling methods; (d) the composition of the 
training and test sets; and (e) the employment of 
validation techniques to verify the predictive 
performance of the developed models. 
We consider that the linear methodology is the 
statistical technique for analyzing present dataset of 
benzothiazoles derivatives series, as few experimental 
observations are available on it and thus it is necessary 
to employ the lowest number of optimized parameters 
during the model development. In this way, we resort 
to the Replacement Method (RM) as variable subset 
selection approach applied on a pool containing more 
than a thousand of descriptors, as this technique has 
been successful for selecting relevant structural 
descriptors. Finally, another main interest of present 
research is to apply the so derived QSAR models for 
estimating the antiplasmodial potency on some new 
structures, for which there still are no experimental 
activities. 
The construction of QSAR/QSPR model typically 
comprises of two main steps:  

(i) Description of molecular structure and  

(ii)  Multivariate analysis for correlating 
molecular descriptors with observed 
activities/properties.  

An essential preliminary step in model development is 
data understanding. Intermediate steps that are also 
crucial for successful development of such 
QSAR/QSPR models include data preprocessing and 
statistical evaluation. A schematic representation of the 
QSAR process is illustrated in Figure No.2. Data 
understanding Data understanding is a crucial step that 
one should not overlook as it helps the researcher to 
become familiar with the nature of the data prior to 
actual QSAR/QSPR model construction thereby 
reducing unnecessary errors or labors that would 
otherwise occur. An added benefit is that such 
preliminary observations can often lead to the 
identification of interesting associations or 
relationships to study. However, before exploring the 
data it is essential that thorough literature search on 
relevant background information pertaining to the 
biological or chemical system of interest is performed. 
This can be achieved through what is known as 
exploratory data analysis which often starts with 
simple observation of the data matrix particularly the 
variables (also known as attributes or fields), its 
corresponding data types, and the data samples (also 
called records). 
Molecular descriptors28-36 
Molecular descriptors can be defined as the essential 
information of a molecule in terms of its 
physicochemical properties such as constitutional, 
electronic, geometrical, hydrophobic, lipophilicity, 
solubility, steric, quantum chemical, and topological 
descriptors. A more in-depth explanation of molecular 
descriptors can be found in the literature (Helguera et 
al., 2008; Karelson et al., 1996; Katritzky and 
Gordeeva, 1993; Labute, 2000; Randic, 1990; Randic 
and Razinger, 1997; Xue and Bajorath, 2000) and a 
more extensive treatment in the encyclopedic 
Handbook of Molecular Descriptors (Todeschini and 
Consonni, 2000). From a practical viewpoint, 
molecular descriptors are chemical information that is 
encoded within the molecular structures for which 
numerous sets of algorithms are available for such 
transformation. Such descriptors could be calculated 
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using general quantum chemical software such as 
Gaussian (Frisch et al., 2004), Spartan (Wave function, 
2004), GAMESS (Gordon and Schmidt, 2005; 
Schmidt et al., 1993), NWChem (Kendall et al., 2000), 
Jaguar (Schrödinger, 2008), MOLCAS (Karlström et 
al., 2003), Q-Chem (Shao et al., 2006), Dalton (Angeli 
et al., 2005), and MOPAC (Stewart, 2009) or 
specialized software such as DRAGON (Taletesrl, 
2007; Tetko et al., 2005), CODESSA (Katritzky et al., 
2005), ADRIANA. Code (Molecular Networks GmbH 
Computer chemie, 2008), and RECON (Sukumar and 
Breneman, 2002). Once the molecular descriptors have 
been calculated it will serve as independent variables 
for further construction of the QSAR model. 
Modeled activities/properties37-43 
The activities and properties that can be modeled by 
QSAR/QSPR are dependent variables of the QSAR 
model. These dependent variables are assumed to be 
influenced by the independent variables which are the 
molecular descriptors. A variety of biological and 
chemical properties have successfully been modeled 
using the QSAR approach. 
Data pre-processing44-46 
Data pre-processing can be considered to be one of the 
most important phase of data mining as it helps to 
ensure the integrity of the data set before proceeding 
further with data mining analysis. Essentially, the 
quality of a data mining analysis is a function of the 
quality of the data to be analyzed. This is often 
summarized by the “garbage in-garbage out” rule. 
Therefore, to obtain reliable QSAR models it is 
important to handle the data with great care. 
Data cleaning47-53 
The preliminary steps in data preprocessing typically 
requires data cleaning as raw data often contain 
anomalies, errors, or inconsistencies such as missing 
data, incomplete data, and invalid character values 
which may cause trouble for data mining software if 
left untreated. This matter is made complicated when 
information are consolidated from various sources as 
such data would need to be prepared to conform to 
designated criteria and redundant information would 
also need to be eliminated. 
 
 

Data transformation54-65 
There exists a great deal of variability in the range and 
distribution of each variable in the data set. However, 
this may pose a problem for data mining algorithms 
such as neural network which involves distance 
measurements in the learning step. Such situation is 
handled by applying statistical techniques such as min-
max normalization or z-score standardization. In min-
max normalization, the minimum and maximum value 
of each variable is adjusted to a uniform range between 
0 and 1. 
Multivariate analysis66-74 
Multivariate analysis is essentially an approach to 
quantitatively discern relationships between the 
independent variables (e.g. molecular descriptors) and 
the dependent variables (e.g. biological/chemical 
properties of interest). The classical approach is a 
linear regression technique typically involving the 
establishment of a linear mathematical equation. 
 
CONCLUSION 
The past few decades have witnessed many advances 
in the development of computational models for the 
prediction of a wide span of biological and chemical 
activities that are beneficial for screening promising 
compounds with robust properties. In this review 
article, we have provided a brief introduction to the 
concepts of QSAR along with examples from our 
previous investigation son diverse biological and 
chemical systems. It should be noted that the 
applicability of QSAR models are only useful in the 
domains that they were trained and validated. As such, 
QSAR models spanning wider domains of molecular 
diversity have the benefit of being valid for wider 
spans of molecules. It is also interesting to note that 
there are many paths for researchers in the field of 
QSAR/QSPR in their quest of establishing 
relationships between structure and 
activities/properties. Such abstract nature holds the 
beauty of the field as there are endless possibilities in 
reaching the same destination of designing novel 
molecules with desirable properties. 
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